\(\int \frac {(f+g x) (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2}} \, dx\) [703]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 44, antiderivative size = 125 \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=-\frac {2 \left (2 a e^2 g-c d (9 e f-7 d g)\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{63 c^2 d^2 e (d+e x)^{7/2}}+\frac {2 g \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}} \]

[Out]

-2/63*(2*a*e^2*g-c*d*(-7*d*g+9*e*f))*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c^2/d^2/e/(e*x+d)^(7/2)+2/9*g*(a*
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c/d/e/(e*x+d)^(5/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {808, 662} \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=\frac {2 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} \left (2 a e^2 g-c d (9 e f-7 d g)\right )}{63 c^2 d^2 e (d+e x)^{7/2}} \]

[In]

Int[((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

(-2*(2*a*e^2*g - c*d*(9*e*f - 7*d*g))*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(63*c^2*d^2*e*(d + e*x)^(
7/2)) + (2*g*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(9*c*d*e*(d + e*x)^(5/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 808

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 g \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}}+\frac {1}{9} \left (9 f-\frac {7 d g}{e}-\frac {2 a e g}{c d}\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx \\ & = \frac {2 \left (9 f-\frac {7 d g}{e}-\frac {2 a e g}{c d}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{63 c d (d+e x)^{7/2}}+\frac {2 g \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.51 \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=\frac {2 (a e+c d x)^3 \sqrt {(a e+c d x) (d+e x)} (-2 a e g+c d (9 f+7 g x))}{63 c^2 d^2 \sqrt {d+e x}} \]

[In]

Integrate[((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

(2*(a*e + c*d*x)^3*Sqrt[(a*e + c*d*x)*(d + e*x)]*(-2*a*e*g + c*d*(9*f + 7*g*x)))/(63*c^2*d^2*Sqrt[d + e*x])

Maple [A] (verified)

Time = 0.51 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.47

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (c d x +a e \right )^{3} \left (-7 c d g x +2 a e g -9 c d f \right )}{63 \sqrt {e x +d}\, c^{2} d^{2}}\) \(59\)
gosper \(-\frac {2 \left (c d x +a e \right ) \left (-7 c d g x +2 a e g -9 c d f \right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}{63 c^{2} d^{2} \left (e x +d \right )^{\frac {5}{2}}}\) \(67\)

[In]

int((g*x+f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/63*((c*d*x+a*e)*(e*x+d))^(1/2)/(e*x+d)^(1/2)*(c*d*x+a*e)^3*(-7*c*d*g*x+2*a*e*g-9*c*d*f)/c^2/d^2

Fricas [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.38 \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=\frac {2 \, {\left (7 \, c^{4} d^{4} g x^{4} + 9 \, a^{3} c d e^{3} f - 2 \, a^{4} e^{4} g + {\left (9 \, c^{4} d^{4} f + 19 \, a c^{3} d^{3} e g\right )} x^{3} + 3 \, {\left (9 \, a c^{3} d^{3} e f + 5 \, a^{2} c^{2} d^{2} e^{2} g\right )} x^{2} + {\left (27 \, a^{2} c^{2} d^{2} e^{2} f + a^{3} c d e^{3} g\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{63 \, {\left (c^{2} d^{2} e x + c^{2} d^{3}\right )}} \]

[In]

integrate((g*x+f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

2/63*(7*c^4*d^4*g*x^4 + 9*a^3*c*d*e^3*f - 2*a^4*e^4*g + (9*c^4*d^4*f + 19*a*c^3*d^3*e*g)*x^3 + 3*(9*a*c^3*d^3*
e*f + 5*a^2*c^2*d^2*e^2*g)*x^2 + (27*a^2*c^2*d^2*e^2*f + a^3*c*d*e^3*g)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a
*e^2)*x)*sqrt(e*x + d)/(c^2*d^2*e*x + c^2*d^3)

Sympy [F(-1)]

Timed out. \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*x+f)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.13 \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=\frac {2 \, {\left (c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} e x^{2} + 3 \, a^{2} c d e^{2} x + a^{3} e^{3}\right )} \sqrt {c d x + a e} f}{7 \, c d} + \frac {2 \, {\left (7 \, c^{4} d^{4} x^{4} + 19 \, a c^{3} d^{3} e x^{3} + 15 \, a^{2} c^{2} d^{2} e^{2} x^{2} + a^{3} c d e^{3} x - 2 \, a^{4} e^{4}\right )} \sqrt {c d x + a e} g}{63 \, c^{2} d^{2}} \]

[In]

integrate((g*x+f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

2/7*(c^3*d^3*x^3 + 3*a*c^2*d^2*e*x^2 + 3*a^2*c*d*e^2*x + a^3*e^3)*sqrt(c*d*x + a*e)*f/(c*d) + 2/63*(7*c^4*d^4*
x^4 + 19*a*c^3*d^3*e*x^3 + 15*a^2*c^2*d^2*e^2*x^2 + a^3*c*d*e^3*x - 2*a^4*e^4)*sqrt(c*d*x + a*e)*g/(c^2*d^2)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1147 vs. \(2 (113) = 226\).

Time = 0.32 (sec) , antiderivative size = 1147, normalized size of antiderivative = 9.18 \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate((g*x+f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

2/315*(105*a^2*f*((sqrt(-c*d^2*e + a*e^3)*c*d^2 - sqrt(-c*d^2*e + a*e^3)*a*e^2)/(c*d) + ((e*x + d)*c*d*e - c*d
^2*e + a*e^3)^(3/2)/(c*d*e))*abs(e) + 3*c^2*d^2*f*((15*sqrt(-c*d^2*e + a*e^3)*c^3*d^6 - 3*sqrt(-c*d^2*e + a*e^
3)*a*c^2*d^4*e^2 - 4*sqrt(-c*d^2*e + a*e^3)*a^2*c*d^2*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*e^6)/(c^3*d^3*e^2) +
(35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^2*e^6 - 42*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*a*e^3 + 1
5*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2))/(c^3*d^3*e^5))*abs(e)/e^2 + 6*a*c*d*g*((15*sqrt(-c*d^2*e + a*e^3)
*c^3*d^6 - 3*sqrt(-c*d^2*e + a*e^3)*a*c^2*d^4*e^2 - 4*sqrt(-c*d^2*e + a*e^3)*a^2*c*d^2*e^4 - 8*sqrt(-c*d^2*e +
 a*e^3)*a^3*e^6)/(c^3*d^3*e^2) + (35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^2*e^6 - 42*((e*x + d)*c*d*e -
 c*d^2*e + a*e^3)^(5/2)*a*e^3 + 15*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2))/(c^3*d^3*e^5))*abs(e)/e - c^2*d^
2*g*((35*sqrt(-c*d^2*e + a*e^3)*c^4*d^8 - 5*sqrt(-c*d^2*e + a*e^3)*a*c^3*d^6*e^2 - 6*sqrt(-c*d^2*e + a*e^3)*a^
2*c^2*d^4*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*c*d^2*e^6 - 16*sqrt(-c*d^2*e + a*e^3)*a^4*e^8)/(c^4*d^4*e^3) + (1
05*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^3*e^9 - 189*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*a^2*e^6 +
 135*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2)*a*e^3 - 35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(9/2))/(c^4*d^4*
e^7))*abs(e)/e^2 - 42*a*c*d*f*((3*sqrt(-c*d^2*e + a*e^3)*c^2*d^4 - sqrt(-c*d^2*e + a*e^3)*a*c*d^2*e^2 - 2*sqrt
(-c*d^2*e + a*e^3)*a^2*e^4)/(c^2*d^2) + (5*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*e^3 - 3*((e*x + d)*c*d*
e - c*d^2*e + a*e^3)^(5/2))/(c^2*d^2*e^2))*abs(e)/e^2 - 21*a^2*g*((3*sqrt(-c*d^2*e + a*e^3)*c^2*d^4 - sqrt(-c*
d^2*e + a*e^3)*a*c*d^2*e^2 - 2*sqrt(-c*d^2*e + a*e^3)*a^2*e^4)/(c^2*d^2) + (5*((e*x + d)*c*d*e - c*d^2*e + a*e
^3)^(3/2)*a*e^3 - 3*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2))/(c^2*d^2*e^2))*abs(e)/e)/e

Mupad [B] (verification not implemented)

Time = 12.43 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.07 \[ \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx=\frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {2\,c^2\,d^2\,g\,x^4}{9}+\frac {2\,a\,e\,x^2\,\left (5\,a\,e\,g+9\,c\,d\,f\right )}{21}+\frac {2\,c\,d\,x^3\,\left (19\,a\,e\,g+9\,c\,d\,f\right )}{63}-\frac {2\,a^3\,e^3\,\left (2\,a\,e\,g-9\,c\,d\,f\right )}{63\,c^2\,d^2}+\frac {2\,a^2\,e^2\,x\,\left (a\,e\,g+27\,c\,d\,f\right )}{63\,c\,d}\right )}{\sqrt {d+e\,x}} \]

[In]

int(((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((2*c^2*d^2*g*x^4)/9 + (2*a*e*x^2*(5*a*e*g + 9*c*d*f))/21 + (2*
c*d*x^3*(19*a*e*g + 9*c*d*f))/63 - (2*a^3*e^3*(2*a*e*g - 9*c*d*f))/(63*c^2*d^2) + (2*a^2*e^2*x*(a*e*g + 27*c*d
*f))/(63*c*d)))/(d + e*x)^(1/2)